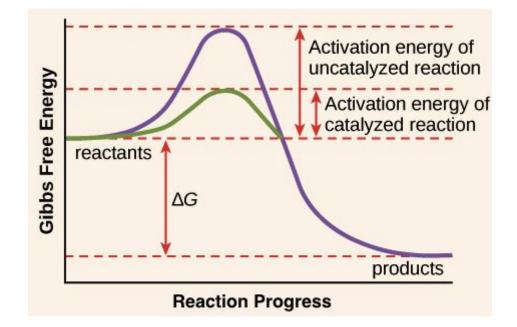
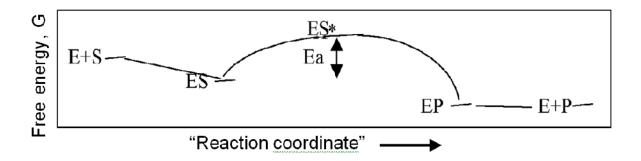
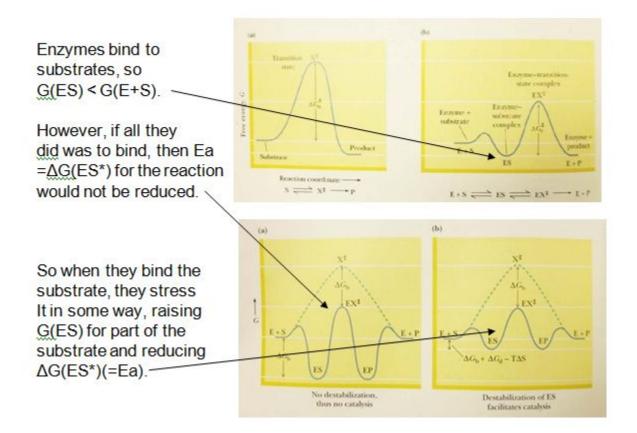

Ram Balak Mahto Guest faculty Zoology department v.s.j college Rajnagar Madhubani Class B.Sc 3rd yr. Paper 5, group-A 7908055676


Mechanisms of Enzyme Action

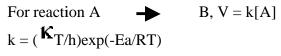
Kinetics of an uncatalyzed chemical reaction:


Free energy, G

Ea is "activation energy"


Kinetics of a catalyzed chemical reaction:

S + E 🔁 ES 🔁 ES* 🔁 EP 🔁 E + P



- 1. Enzyme does not affect ΔG or ΔG° between S and P (i.e., equilibrium)
- 2. Enzyme reduces Ea: Ea (catalyzed) < Ea (<u>uncatalyzed</u>)

A more complete way of showing the effects of enzymes:

Quantitatively, what is the effect of reducing Ea?

 \mathbf{K} = Boltzman's constant; h = Plank's constant,

So k and thus V are inversely and exponentially related to Ea and directly related to T:

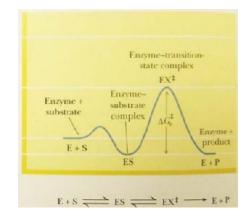
A 6 kJ/mol reduction in Ea gives ca 10x increase in k and V

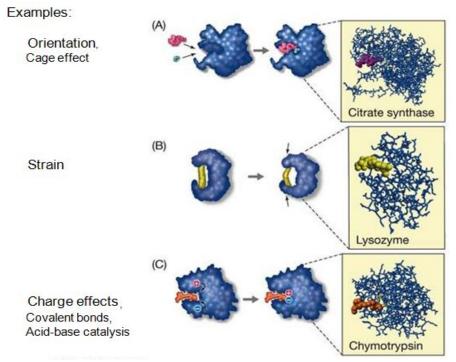
 Δ k ~ exp(+6000/8.3*300) ~ 11

(reduction in Ea is an increase from –Ea)

V (catalyzed)/V(uncatalyzed) for various enzymes varies from 10^4 to 10^{21} , meaning Ea is reduced by ca 23 to 126 kJ/mol

How do enzymes reduce Ea?

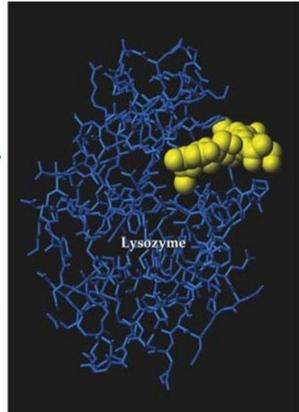

These effects raise G(ES):


cage effect, orientation, steric straining of bonds (stress from H-, Vanderwaal's, ionic bonds), dislocation of bonding electrons through +/- charges These effects reduce G(ES*): covalent bonds, acidbase catalysis, low-barrier hydrogen bonds, and metal ion catalysis

Different classes of enzymes may use

different mechanisms:

- **1.** Oxidoreductases (oxidation-reduction reactions)
- **2.** Transferases (transfer of functional groups)
- **3.** Hydrolases (hydrolysis reactions)
- **4.** Lyases (addition to double bonds)
- **5.** Isomerases (isomerization reactions)
- **6.** Ligases (formation of bonds with ATP cleavage)



An example of an enzyme that sterically strains the substrate:

Lysozyme distorts the bonds of one of the sugars in the polysaccharide of a bacterial cell wall

It also places a partial charge on the substrate, making it react more easily with water (hydrolysis).

Hydrolysis breaks the polysaccharide chain and weakens the wall so that the cell lyses.

Summary

Enzymes speed reactions by reducing Ea Enzyme reduce Ea by stressing substrate (raising G(ES)) and by reducing G(ES*) Lysozyme and chymotrypsin give examples of enzyme pathways for hydrolysis